Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: Research Program

Reliability by a posteriori error control

The fourth part of our theoretical efforts goes towards guaranteeing the results obtained at the end of the numerical simulation. Here a key ingredient is the development of rigorous a posteriori estimates that make it possible to estimate in a fully computable way the error between the unknown exact solution and its numerical approximation. Our estimates also allow to distinguish the different components of the overall error, namely the errors coming from modeling, from the discretization scheme, from the nonlinear (Newton) solver, and from the linear algebraic (Krylov, domain decomposition, multigrid) solver. A new concept here is that of local stopping criteria, where all the error components are balanced locally within each computational mesh element. This naturally connects all parts of the numerical simulation process and gives rise to novel fully adaptive algorithms. We also theoretically address the question of convergence of the new fully adaptive algorithms. We identify theoretical conditions so that the error diminishes at each adaptive loop iteration by a contraction factor and we in particular derive a guaranteed error reduction factor in model cases. We have also proved a numerical optimality of the derived algorithms in model cases in the sense that, up to a generic constant, the smallest possible computational effort to achieve the given accuracy is needed.